Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Gunter Oberdorster

Gunter Oberdorster

University of Rochester, USA

Title: Fate and effects of inhaled nanomaterials: What are the perceived and real risks?

Biography

Biography: Gunter Oberdorster

Abstract

The rapid introduction of nanotechnology in manufactured goods for diverse industrial applications and consumer uses promises great benefits, which – however – may be significantly offset because of toxicity implications. Indeed, serious concerns have been expressed about risks posed by exposure to engineered nanomaterials (ENMs), their potential to cause undesirable health effects, contaminate the environment and thereby adversely affect living systems. For example, carbon and TiO2 nanoparticles inhaled by rats at extraordinarily high concentrations in chronic studies induced lung tumors due to lung overloading, although carbon black and TiO2 nanoparticles are generally considered to be rather benign materials. As another example, carbon nanotubes administered acutely to rats and mice as bolus or by inhalation of high concentrations induced significant pulmonary inflammation and intraperitoneal and intrapleural injections of multi-walled carbon nanotubes (MWCNT) caused pleural granulomata and cancer of the pleural lining. These findings caused great concern about asbestos-like long-term toxicity and carcinogenicity of fiber-shaped nanomaterials. Although subsequent three-month subchronic rat inhalation studies with MWCNT did not result in carcinogenicity, the short exposure duration of these studies is insufficient for identifying a carcinogenic risk. New data on translocation and clearance mechanisms of inhaled MWCNT to pleural tissue and other target sites have to be considered. An example of assessing nanomaterial safety based on subchronic inhalation studies in rodents with multi-walled carbon nanotubes and based on a comparison to positive and negative benchmark materials will be discussed, emphasizing the importance of using well-designed studies to identify and separate real from perceived risks.